题目内容
13.若an=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$.,bn=n,n∈N*,则b1(a2012-a1)+b2(a2012-a2)+b3(a2012-a3)+…+b2011(a2012-a2011)=1011533.分析 an=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$.,bn=n,n∈N*,可得b1(a2-a1)=$\frac{1}{2}$,b1(a3-a1)+b2(a3-a2)=$\frac{1}{2}+\frac{1+2}{3}$,…,依此类推可得:b1(a2012-a1)+b2(a2012-a2)+b3(a2012-a3)+…+b2011(a2012-a2011)=$\frac{1}{2}+\frac{1+2}{3}+\frac{1+2+3}{4}$+…+$\frac{1+2+3+…+2011}{2012}$,再利用等差数列的前n项和公式即可得出.
解答 解:∵an=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$.,bn=n,n∈N*,
则b1(a2-a1)=$\frac{1}{2}$,
b1(a3-a1)+b2(a3-a2)=$\frac{1}{2}+\frac{1+2}{3}$,
b1(a4-a1)+b2(a4-a2)+b3(a4-a3)=$\frac{1}{2}+\frac{1+2}{3}+\frac{1+2+3}{4}$,
…,
依此类推可得:b1(a2012-a1)+b2(a2012-a2)+b3(a2012-a3)+…+b2011(a2012-a2011)
=$\frac{1}{2}+\frac{1+2}{3}+\frac{1+2+3}{4}$+…+$\frac{1+2+3+…+2011}{2012}$
=$\frac{2-1}{2}$+$\frac{3-1}{2}$+$\frac{4-1}{2}$+…+$\frac{2012-1}{2}$
=$\frac{\frac{2011(1+2011)}{2}}{2}$=1011533.
点评 本题考查了等差数列的前n项和公式、类比推理,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于中档题.
A. | 135 | B. | 172 | C. | 189 | D. | 216 |