题目内容

5.已知命题p:1<2x<8;命题q:不等式x2-mx+4≥0恒成立,若?p是?q的必要条件,实数m的取值范围为(  )
A.(0,4)B.(-∞,4]C.[4,+∞)D.(0,4]

分析 由已知可求p:0<x<3,由¬p是¬q的必要条件可知p是q的充分条件,从而可得x2-mx+4≥0对于任意的x∈(0,3)恒成立,进而转化为m≤$\frac{{x}^{2}+4}{x}$=x+$\frac{4}{x}$对对于任意的x∈(0,3)恒成立,利用基本不等式可求.

解答 解:∵1<2x<8
∴p:0<x<3
∵¬p是¬q的必要条件
∴p是q的充分条件即p⇒q
∵x2-mx+4≥0对于任意的x∈(0,3)恒成立,
∴m≤$\frac{{x}^{2}+4}{x}$=x+$\frac{4}{x}$对于任意的x∈(0,3)恒成立,
∵x+$\frac{4}{x}$≥2$\sqrt{x•\frac{1}{x}}$=4,当且仅当x=2时等号成立
∴m≤4,
故选:B.

点评 本题主要考查了充分条件的应用及基本不等式求解最值中的应用、及函数的恒成立与最值求解的相互转化关系的应用,注意本题解题技巧的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网