题目内容

【题目】,若函数4个不同的零点,且,则的取值范围是(

A.B.C.D.

【答案】A

【解析】

先求出函数的解析式,根据题意,由零点,可以得方程,然后常变量分离,构造函数,利用新构造函数的对称性,得到之间的关系,再根据对数的运算性质,得到之间的关系,这样可以把化简成关于的代数式,最后利用换元法,基本不等式以及函数的单调性求出值域即可.

时,所以有,因此有,所以函数的解析式为:,由题意可知:有四个不同的实数解,因此有:,设函数,因此由可知:函数的图象与函数的图象有四个不同的交点,函数的图象如下图所示:

要想函数的图象与函数的图象有四个不同的交点,必须有,此时有,再由,结合图象可知:函数是关于直线对称,因此有

,所以,令,令,显然函数在上单调递减,

上单调递增,

.

故选:A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网