题目内容
17.已知函数f(x)=a(x-1)2-4lnx,a≥0.(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若对一切x∈[2,e],f(x)≤-1恒成立,求实数a的取值范围.
分析 (Ⅰ)确定函数的定义域,当a=1时,求导数,利用导数的正负求f(x)的单调区间;
(Ⅱ)令g(x)=a(x-1)2-4lnx+1,求出g(x)max=g(e)=a(e-1)2-4lne+1=a(e-1)2-3,利用对一切x∈[2,e],f(x)≤-1恒成立,求实数a的取值范围.
解答 解:(Ⅰ)函数的定义域为(0,+∞).
当a=1时,f(x)=(x-1)2-4lnx,
∴f′(x)=2(x-1)-$\frac{4}{x}$=$\frac{2(x-2)(x+1)}{x}$
由f′(x)>0可得x>2.f′(x)<0可得0<x<2,
∴f(x)的单调增区间是(2,+∞),单调减区间是(0,2);
(Ⅱ)令g(x)=a(x-1)2-4lnx+1,则x∈[2,e],g′(x)=2a(x-1)-$\frac{4}{x}$>0,
∴g(x)=a(x-1)2-4lnx+1在x∈[2,e]上单调递增,
∴g(x)max=g(e)=a(e-1)2-4lne+1=a(e-1)2-3,
∵对一切x∈[2,e],f(x)≤-1恒成立,
∴a(e-1)2-3≤0
∴a≤$\frac{3}{(e-1)^{2}}$.
点评 本题考查导数知识的综合运用,考查函数的单调性,考查恒成立问题,正确求导是关键.
练习册系列答案
相关题目
12.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图直方图:
(Ⅰ)若直方图中前三组的频数成等比数列,后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)若直方图中前三组的频数成等比数列,后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
是否近视 年级名次 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.