题目内容
【题目】当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.程度2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到下边频率分布直方图,且规定计分规则如下表:
每分钟跳绳个数 | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)现从样本的100名学生中,任意选取2人,求两人得分之和不大于35分的概率;;
(Ⅱ)若该校初三年级所有学生的跳绳个数服从正态分布,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差(各组数据用中点值代替).根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:
预计全年级恰有2000名学生,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)
若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195以上的人数为ξ,求随机变量的分布列和期望.
附:若随机变量服从正态分布,则,,.
【答案】(I);(II) ;详见解析.
【解析】
(Ⅰ)根据古典概率概率公式求解即可得到结果;(Ⅱ)先根据频率分布直方图得到平均数个,结合题意得到正式测试时根据正态曲线的对称性可得,由此可预计所求人数;由题意得,根据独立重复试验的概率可得当分别取时的概率,然后可得分布列及期望.
(Ⅰ)设“两人得分之和不大于35分”为事件A,则事件A包括两种情况:①两人得分均为17分;②两人中1人得17分,1人得18分.
由古典概型概率公式可得,
所以两人得分之和不大于35分的概率为.
(Ⅱ)由频率分布直方图可得样本数据的平均数为
(个),
又由,
所以正式测试时,
∴.
由正态曲线的对称性可得
∴(人),
所以可预计全年级恰有2000名学生,正式测试每分钟跳182个以上的人数为1683人.
由正态分布模型,全年级所有学生中任取1人,每分钟跳绳个数195以上的概率为0.5,
所以
∴
.
∴ 的分布列为
0 | 1 | 2 | 3 | |
∴.
【题目】一般来说,一个人脚掌越长,他的身高就越高,现对10名成年人的脚掌与身高进行测量,得到数据(单位:cm)作为样本如表所示:
脚掌长() | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
身高() | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程;
(2)若某人的脚掌长为26.5cm,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人进行进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(参考数据:,,,,)