题目内容
在数列{an}中,已知a1=1,a2=2,且数列{an}的奇数项依次组成公差为1的等差数列,偶数项依次组成公比为2的等比数列,数列{bn}满足bn=a2n-1 |
a2n |
(1)写出数列{an}的通项公式;
(2)求Sn;
(3)证明:当n≥6时,2-Sn<
1 |
n |
分析:(1)由题意知an=
.
(2)bn=
=
,Sn=
+
+
++
,
Sn=
+
+
++
+
,用错位相减法可以求出Sn=2-(n+2)(
)n.
(3)2-Sn=(n+2)(
)n<
?n2+2n<2n,由此能够求出当n≥6时,2-Sn<
.
|
(2)bn=
a2n-1 |
a2n |
n |
2n |
1 |
2 |
2 |
4 |
3 |
8 |
n |
2n |
1 |
2 |
1 |
4 |
2 |
8 |
3 |
16 |
n-1 |
2n |
n |
2n+1 |
1 |
2 |
(3)2-Sn=(n+2)(
1 |
2 |
1 |
n |
1 |
n |
解答:解:(1)an=
;即an=
;
(2)bn=
=
,
Sn=
+
+
++
,
Sn=
+
+
++
+
,
两式相减,得
Sn=
+
+
+
++
-
=[1-(
)n]-
,
所以,Sn=2-(n+2)(
)n;
(3)2-Sn=(n+2)(
)n<
?n2+2n<2n,
当n≥6时,2n=(1+1)n=Cn0+Cn1+Cn2++Cnn-2+Cnn-1+Cnn
≥2+2n+n(n-1)+
≥2+2n+n2-n+n>n2+2n,
所以,当n≥6时,2-Sn<
.
|
|
(2)bn=
a2n-1 |
a2n |
n |
2n |
Sn=
1 |
2 |
2 |
4 |
3 |
8 |
n |
2n |
1 |
2 |
1 |
4 |
2 |
8 |
3 |
16 |
n-1 |
2n |
n |
2n+1 |
两式相减,得
1 |
2 |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
16 |
1 |
2n |
n |
2n+1 |
1 |
2 |
n |
2n+1 |
所以,Sn=2-(n+2)(
1 |
2 |
(3)2-Sn=(n+2)(
1 |
2 |
1 |
n |
当n≥6时,2n=(1+1)n=Cn0+Cn1+Cn2++Cnn-2+Cnn-1+Cnn
≥2+2n+n(n-1)+
n(n-1)(n-2) |
6 |
所以,当n≥6时,2-Sn<
1 |
n |
点评:本题考查数列的性质和综合运用,难度较大.解题时要认真审题,仔细解答.
练习册系列答案
相关题目