题目内容

在数列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的个位数(n∈N*),若数列{an}的前k项和为2011,则正整数k之值为(  )
分析:根据题意可得:an+2等于anan+1的个位数,所以可得a3=2,a4=4,a5=8,a6=2,a7=6,a8=2,a9=2,a10=4,进而得到数列的一个周期为6,求出两个周期的和,推出周期的数目,即可得到答案.
解答:解:由题意得,a3=a1•a2=2,由题意可得:a4=4,
依此类推,a5=8,a6=2,a7=6,a8=2,a9=2,a10=4,
可以根据以上的规律看出数列除第一项外是一个周期为6的周期数列,
一个周期的数值的和为:2+2+4+8+2+6=24,
因为2011=24×83+19,
就是说,数列有83个周期加上第一项1以及2,2,4,8,2五项,
所以数列共有:1+83×6+5=504.
故选B.
点评:本题是中档题,考查周期数列的求法,注意周期数列的首项与项数,数列的前n项和,考查形式分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网