题目内容

已知椭圆中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆的方程;
(2)设直线经过点(0,1),且与椭圆交于两点,若,求直线的方程.

(1);(2).

解析试题分析:本题主要考查椭圆的标准方程和几何性质、直线的方程等基础知识,考查用代数法研究圆锥曲线的性质,考查运算求解能力、综合分析和解决问题的能力.第一问,先利用椭圆的焦距、离心率求出基本量,写出椭圆方程;第二问,由于直线经过(0,1)点,所以先设出直线方程,与椭圆联立,消参得到关于x的方程,先设出点坐标,通过方程得到两根之和、两根之积,再由,得出,联立上述表达式得k的值,从而得到直线方程.
试题解析:(1)设椭圆方程为
因为,所以
所求椭圆方程为                                4分
(2)由题得直线的斜率存在,设直线方程为
则由,
,则由   ..8分

所以消去
解得
所以直线的方程为,即      12分
考点:1.椭圆的标准方程;2.直线方程;3.韦达定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网