题目内容

17.已知x为第二象限角,且tan2x+3tanx-4=0,则$\frac{sinx+cosx}{2sinx-cosx}$=$\frac{1}{3}$.

分析 已知等式变形,根据x为第二象限角求出tanx的值,原式分子分母除以cosx,利用同角三角函数间基本关系化简,把tanx的值代入计算即可求出值.

解答 解:∵x为第二象限角,且tan2x+3tanx-4=0,即(tanx-1)(tanx+4)=0,
∴tanx=-4或tanx=1(舍去),
则原式=$\frac{tanx+1}{2tanx-1}$=$\frac{-4+1}{-8-1}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网