题目内容
【题目】在直角坐标系中,曲线的参数方程是(是参数).以原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)设为曲线上的动点,过点且与垂直的直线交于点,求的最小值,并求此时点的直角坐标.
【答案】(1)曲线的普通方程为:;曲线的直角坐标方程为:(2)的最小值为6,此时点的坐标为
【解析】
(1)利用消参法,消去参数,可把曲线的参数方程化为普通方程;通过极坐标和直角坐标的互化公式,可将曲线的极坐标方程化成直角坐标方程;
(2)点是曲线上动点,由的参数方程可表示出点坐标,运用点到直线距离公式求到直线的距离,再运用辅助角公式化简即可得出答案.
(1)由曲线,可得:
两式两边平方相加可得:曲线的普通方程为:.
由曲线得:,
即,所以曲线的直角坐标方程为:.
(2)由(1)知椭圆与直线无公共点,
椭圆上的点到直线的距离为
,
当时,的最小值为,
此时的最小值为6,此时点的坐标为.
【题目】某医学院欲研究昼夜温差大小与患感冒人数多少之间的关系,该院派出研究小组分别到气象局与某医院,抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到数据资料见表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
昼夜温差(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 23 | 26 | 30 | 27 | 17 | 13 |
该研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻的两个月的概率;
(2)已知选取的是1月与6月的两组数据.
(i)请根据2到5月份的数据,求就诊人数y关于昼夜温差x的线性回归方程:
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该研究小组所得的线性回归方程是否理想?
(参考公式)