题目内容
(2006•东城区一模)已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0.
(Ⅰ)求证:数列{an-1}是等比数列;
(Ⅱ)若bn=
(n+2)(an-1),当n取何值时,bn取最大值,并求出最大值.
(Ⅰ)求证:数列{an-1}是等比数列;
(Ⅱ)若bn=
9 | 10 |
分析:( I)表示出(an+1-an)g(an)+f(an)=0,可化简为an+1=
an+
,可证
为常数;
(Ⅱ)(Ⅱ)由( II)可知an-1=(
)n-1(n∈N*),则bn=
(n+2)(an-1)=(n+2)(
)n,作商
,通过与1比较大小可{bn}的单调情况,由此可的最大值;
9 |
10 |
1 |
10 |
an+1-1 |
an-1 |
(Ⅱ)(Ⅱ)由( II)可知an-1=(
9 |
10 |
9 |
10 |
9 |
10 |
bn+1 |
bn |
解答:解:( I)∵(an+1-an)g(an)+f(an)=0,f(an)=(an-1)2,g(an)=10(an-1),
∴(an+1-an)10(an-1)+(an-1)2=0,即(an-1)(10an+1-9an-1)=0.
又a1=2,可知对任何n∈N*,an-1≠0,
所以an+1=
an+
.
∵
=
=
,
∴{an-1}是以a1-1=1为首项,公比为
的等比数列.
(Ⅱ)由( II)可知an-1=(
)n-1(n∈N*).
∴bn=
(n+2)(an-1)=(n+2)(
)n,
=
=
(1+
).
当n=7时,
=1,b8=b7;
当n<7时,
>1,bn+1>bn;
当n>7时,
<1,bn+1<bn.
∴当n=7或n=8时,bn取最大值,最大值为b7=b8=
.
∴(an+1-an)10(an-1)+(an-1)2=0,即(an-1)(10an+1-9an-1)=0.
又a1=2,可知对任何n∈N*,an-1≠0,
所以an+1=
9 |
10 |
1 |
10 |
∵
an+1-1 |
an-1 |
| ||||
an-1 |
9 |
10 |
∴{an-1}是以a1-1=1为首项,公比为
9 |
10 |
(Ⅱ)由( II)可知an-1=(
9 |
10 |
∴bn=
9 |
10 |
9 |
10 |
bn+1 |
bn |
(n+3)(
| ||
(n+2)(
|
9 |
10 |
1 |
n+2 |
当n=7时,
b8 |
b7 |
当n<7时,
bn+1 |
bn |
当n>7时,
bn+1 |
bn |
∴当n=7或n=8时,bn取最大值,最大值为b7=b8=
98 |
107 |
点评:本题考查数列与函数的综合,考查数列的函数特性,属中档题.
练习册系列答案
相关题目