题目内容

(2006•东城区一模)已知函数f(x)=|1-
1x
|, (x>0)

(1)当0<a<b且f(a)=f(b)时,求证:ab>1;
(2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值;若不存在,请说明理由.
分析:(1)由f(a)=f(b),推得0<a<1<b,且
1
a
+
1
b
=2
,再利用基本不等式即可得到结论.
(2)先假设存在满足条件的实数a,b,由于f(x)是绝对值函数,则分当a,b∈(0,1)时、a∈(0,1)且b∈[1,+∞)和a,b∈[1,+∞)时三种情况分析,即可得到正确结论.
解答:解:(1)f(a)=f(b)得|1-
1
a
|=|1-
1
b
|
1-
1
a
=±(1-
1
b
)
,得a=b(舍)或
1
a
+
1
b
=2

2=
a+b
ab
2
ab
ab
=
2
ab
,∴
ab
≥1

∵a≠b,∴等号不可以成立,故ab>1…..…(5分)
(2)不存在.f(x)=
1-
1
x
 x≥1
1
x
-1 x<1

①当a,b∈(0,1)时,f(x)=
1
x
-1
在(0,1)上单调递减,可得
f(a)=b
f(b)=a

1
a
-1=b
1
b
-1=a
1
a
-
1
b
=b-a
b=
1
a
,-1=0
矛盾
②当a∈(0,1),b∈[1,+∞)时,显然1∈[a,b],而f(1)=0,则0∈[a,b]矛盾
③当a,b∈[1,+∞),f(x)=1-
1
x
在(1,+∞)上单调递增,可得
f(a)=a
f(b)=b
1-
1
a
=a
1-
1
b
=b
,a,b是方程1-
1
x
=x
的两个根,此方程无解; …(11分)
点评:本题主要考查绝对值函数的单调性、定义域和值域,同时还考查学生的分类讨论解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网