题目内容
【题目】在极坐标系中,点M的坐标为,曲线C的方程为;以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为的直线l经过点M.
(I)求直线l和曲线C的直角坐标方程:
(II)若P为曲线C上任意一点,直线l和曲线C相交于A,B两点,求△PAB面积的最大值.
【答案】(1)直线方程为y=﹣x+3,曲线C的直角坐标方程为(x﹣1)2+(y﹣1)2=2;(2)
【解析】试题分析:(1)根据极坐标和直角坐标的互化公式得到直线方程为y=﹣x+3,曲线C的直角坐标方程为(x﹣1)2+(y﹣1)2=2;(2)由图像的到圆上的点到直线L的距离最大值为,再计算弦长即三角形的底边长,进而得到面积。
解析:
(1)∵在极坐标系中,点M的坐标为,
∴x=3cos=0,y=3sin=3,
∴点M的直角坐标为(0,3),
∴直线方程为y=﹣x+3,
由,得ρ2=2ρsinθ+2ρcosθ,
∴曲线C的直角坐标方程为x2+y2﹣2x﹣2y=0,
即(x﹣1)2+(y﹣1)2=2
(2)圆心(1,1)到直线y=﹣x+3的距离,
∴圆上的点到直线L的距离最大值为,
而弦
∴△PAB面积的最大值为。
练习册系列答案
相关题目