题目内容
【题目】设等差数列{an}满足a3=5,a10=﹣9.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{an}的前n项和Sn及使得Sn最大的序号n的值.
【答案】解:(Ⅰ)由an=a1+(n﹣1)d及a3=5,a10=﹣9得
a1+9d=﹣9,a1+2d=5
解得d=﹣2,a1=9,
数列{an}的通项公式为an=11﹣2n
(Ⅱ)由(1)知Sn=na1+ d=10n﹣n2 .
因为Sn=﹣(n﹣5)2+25.
所以n=5时,Sn取得最大值
【解析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{an}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.
练习册系列答案
相关题目
【题目】已知某蔬菜商店买进的土豆(吨)与出售天数(天)之间的关系如下表所示:
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)请根据上表数据在所给网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(其中保留2位有效数字);
(3)根据(2)中的计算结果,若该蔬菜商店买进土豆40吨,则预计可以销售多少天(计算结果保留整数)?
附: ,