题目内容
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心为,半径为1的圆.
(1)求曲线, 的直角坐标方程;
(2)设为曲线上的点, 为曲线上的点,求的取值范围.
【答案】(1)的直角坐标方程为, 的直角坐标方程为;(2)的取值范围是.
【解析】试题分析:(Ⅰ)消去参数可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,3),可得C2的直角坐标方程;
(Ⅱ)设M(2cos,sin),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案.
试题解析:
(1)消去参数可得的直角坐标方程为.
曲线的圆心的直角坐标为,
∴的直角坐标方程为.
(2)设,
则
.
∵,∴, .
根据题意可得, ,
即的取值范围是.
练习册系列答案
相关题目
【题目】某公司为了解用户对其产品的满意度,从A、B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区: | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地区: | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率。