题目内容
(本小题满分12分)
已知函数
(
,实数
,
为常数).
(Ⅰ)若
,求
在
处的切线方程;
(Ⅱ)若
,讨论函数
的单调性.
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006706826.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006722393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006753283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006769299.png)
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006784502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006816323.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006831482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
(Ⅰ)
;
(Ⅱ)当
时,函数
的单调递减区间为
,单调递增区间为
;当
时,函数
的单调递增区间为
,
,单调递减区间为
;当
时,函数
的单调递增区间为
;当
时,函数
的单调递增区间为
,
,单调递减区间为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006878542.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006894411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007065428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007081510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007112507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007159581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007081510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007284549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007299403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007471535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007486426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007065428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007627647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007658554.png)
(1)把
,代入
,可求出
,当![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007736627.png)
,由点斜式方程写出曲线的切线方程,再化为一般式;(2)把
代入得
,
,注意定义域,令
,得
,
.需讨论
与0和1的大小得
或
的
的范围,就是原函数的增区间或减区间.
(Ⅰ)因为
,所以函数
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223008142519.png)
又
,
………………………………………………2分
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223008422662.png)
即
在
处的切线方程为
…………………………………5分
(Ⅱ)因为
,所以
,则
令
,得
,
.……………………………………………7分
(1)当
,即
时,函数
的单调递减区间为
,
单调递增区间为
;…………………………………………8分
(2)当
,即
时,
,
的变化情况如下表:
所以,函数
的单调递增区间为
,
,
单调递减区间为
;…………………………9分
(3)当
,即
时,函数
的单调递增区间为
;………10分
(4)当
,即
时,
,
的变化情况如下表:
所以函数
的单调递增区间为
,
,单调递减区间为
;……………………………………11分
综上,当
时,函数
的单调递减区间为
,单调递增区间为
;当
时,函数
的单调递增区间为
,
,单调递减区间为
;当
时,函数
的单调递增区间为
;当
时,函数
的单调递增区间为
,
,单调递减区间为
.…………………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006784502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006706826.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007720747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007736627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007767546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006831482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007876925.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230078921255.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007908550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007939533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007954384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007970413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223008001554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223008017559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223008064266.png)
(Ⅰ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006784502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223008110694.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223008142519.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007720747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007767546.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223008422662.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006816323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006878542.png)
(Ⅱ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006831482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007876925.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230078921255.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223009171489.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007908550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007939533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007954384.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223009265527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006894411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007065428.png)
单调递增区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007081510.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223009452577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007112507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223009483479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007159581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007081510.png)
单调递减区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007284549.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223010107464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007299403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007471535.png)
(4)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223010201498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007486426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223009483479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007065428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007627647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007658554.png)
综上,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006894411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007065428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007081510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007112507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007159581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007081510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007284549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007299403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007471535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007486426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223006800447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007065428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007627647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223007658554.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目