题目内容

【题目】圆x2+y2﹣2x+4y+1=0的面积为

【答案】4π
【解析】解:圆的方程 即(x﹣1)2+(y+2)2=4,表示以(1,﹣2)为圆心,半径等于2的圆, 故圆的面积为πr2=4π,
所以答案是:4π.
【考点精析】本题主要考查了圆的一般方程的相关知识点,需要掌握圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网