题目内容

如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=900,AC=1,C点到AB1的距离为CE=,D为AB的中点.

(1)求证:AB??1⊥平面CED;

(2)求异面直线AB1与CD之间的距离;

(3)求二面角B1—AC—B的平面角.

(Ⅰ)证明见解析(Ⅱ)(Ⅲ)


解析:

(1)∵D是AB中点,△ABC为等腰直角三角形,∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.

∴CD⊥平面A1B1BA  ∴CD⊥AB1,又CE⊥AB1, ∴AB1⊥平面CDE;

(2)由CD⊥平面A1B1BA  ∴CD⊥DE

∵AB1⊥平面CDE  ∴DE⊥AB1

∴DE是异面直线AB1与CD的公垂线段

∵CE=,AC=1 , ∴CD=

(3)连结B1C,易证B1C⊥AC,又BC⊥AC ,

∴∠B1CB是二面角B1—AC—B的平面角.

在Rt△CEA中,CE=,BC=AC=1,

∴∠B1AC=600

,  ∴,

 , ∴.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网