题目内容
【题目】已知AB是圆O的直径,C,D是圆上不同两点,且CD∩AB=H,AC=AD,PA⊥圆O所在平面.
(Ⅰ)求证:PB⊥CD;
(Ⅱ)若PB=,∠PBA=,∠CAD=,求H到平面PBD的距离.
【答案】(Ⅰ)证明见解析;(Ⅱ) .
【解析】试题分析:(Ⅰ)由AB是圆O的直径知∠ACB=∠ADB=90°,从而证明PB⊥CD.(Ⅱ)过点P作PB的垂线,过点H作PB的垂线,分别交PB于点E,F;求出H到平面PBD的距离.
试题解析:
(Ⅰ)证明:∵AB是圆O的直径,
∴∠ACB=∠ADB=,
∵AC=AD,∴Rt△ACB≌Rt△ADB,∴AB⊥CD,
又∵PA⊥圆O所在平面,CD在圆O所在平面内,
∴PA⊥CD,
∵PA∩AB=A,∴CD⊥平面PAB,∴PB⊥CD.
(Ⅱ)解:过点A作PB的垂线,过点H作PB的垂线,分别交PB于E,F,
∵Rt△PAB中,∠PBA=,PB=2,
∴PA=AB=2,∴AE=ABsin=2·=,
又∵∠CAB=∠DAB=,∴AC=1,AD=1
∵CH⊥AH,∴AH=,
∴BH=,HD=,BD=,PD=
∴VH-PBD=VP-HDB=××××2=
S△PBD=××=,
∴H到平面PBD的距离为=.
练习册系列答案
相关题目