题目内容
【题目】已知函数,若方程恰有5个不同的实数根,则实数a的取值范围________.
【答案】
【解析】
先作出函数的图象,设,则恰有5个不同的实数根,根据函数图象,分 ,, , , , , ,讨论求解.
作出函数的图象如图所示:
设,则恰有5个不同的实数根,
当时,无解,不符合题意,
当时,有唯一解,,此时,,解得有一解,不符合题意,
当时,有三解,,此时,无解,有三解,无解,共三解,不符合题意,
当时,有两解,,此时,有三解,无解,共三解,不符合题意,
当时,有两解,,此时,有三解,有一解,共四解,不符合题意,
当时,有两解,,此时,有三解,有两解,共五解,不符合题意,
当时,有唯一解,,此时,有两解,不符合题意,
当时,无解,不符合题意.
综上:实数a的取值范围是.
故答案为:
【题目】2019年末,武汉出现新型冠状病毒(肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为,两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下的列联表.
是否满意 组别 | 不满意 | 满意 | 合计 |
组 | 16 | 34 | 50 |
组 | 2 | 45 | 50 |
合计 | 21 | 79 | 100 |
(1)分别估计社区居民对组、组两个排查组的工作态度满意的概率;
(2)根据列联表的数据,能否有的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?
附表:
附:
【题目】国家统计局进行第四次经济普查,某调查机构从15个发达地区,10个欠发达地区,5个贫困地区中选取6个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:
普查对象类别 | 顺利 | 不顺利 | 合计 |
企事业单位 | 40 | 10 | 50 |
个体经营户 | 90 | 60 | 150 |
合计 | 130 | 70 | 200 |
(1)写出选择6个国家综合试点地区采用的抽样方法;
(2)根据列联表判断是否有97.5%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”,分析造成这个结果的原因并给出合理化建议.
附:参考公式: ,其中
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |