题目内容
【题目】对于命题:存在一个常数,使得不等式对任意正数,恒成立.
(1)试给出这个常数的值;
(2)在(1)所得结论的条件下证明命题;
(3)对于上述命题,某同学正确地猜想了命题:“存在一个常数,使得不等式对任意正数,,恒成立.”观察命题与命题的规律,请猜想与正数,,,相关的命题.
【答案】(1) ;(2)详见解析;(3)详见解析.
【解析】试题分析:(1)取特值,定常数的值;(2)利用分析法证明命题P;(3).猜想结论:存在一个常数,使得不等式
对任意正数,,,恒成立.
试题解析:
(1)令得:,故;
(2)先证明.
∵,,要证上式,只要证,
即证 即证,这显然成立.
∴.
再证明.
∵,,要证上式,只要证,
即证 即证,这显然成立.
∴.
(3)猜想结论:存在一个常数,使得不等式
对任意正数,,,恒成立.
练习册系列答案
相关题目
【题目】某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)计算上线考生中抽取的男生成绩的方差;(结果精确到小数点后一位)
(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.