题目内容
【题目】BD是等腰直角三角形△ABC腰AC上的中线,AM⊥BD于点M,延长AM交BC于点N,AF⊥BC于点F,AF与BD交于点E.
(1)求证;△ABE≌△ACN;
(2)求证:∠ADB=∠CDN.
【答案】
(1)
证明:∠BAE=∠C=45°,
AB=AC,
∠ABD=∠NAC(∠ADB的余角),
∴△ABE≌△ACN
(2)
证明:由(1)可得AE=NC,
AD=CD,∠EAD=∠C=45°,
∴△ADE≌△CDN,
∴∠ADB=∠CDN.
【解析】(1)通过证明∠BAE=∠C,AB=AC,∠ABD=∠NAC,即可判定△ABE≌△ACN.(2)由AE=NC,AD=CD,∠EAD=∠C,可证明△ADE≌△CDN,利用全等三角形的性质即可证明∠ADB=∠CDN.
练习册系列答案
相关题目