题目内容

【题目】ABC中,角A,B,C的对边分别为a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大小;

(Ⅱ)若,求的值.

【答案】(1)(2)

【解析】试题分析:(1)由于2bcosC+c=2a,是关于边的一次齐次式,所以用正弦定理把边化为角,可得到。(2)由(1)中,可知A,B角己知,同时根据三角形内角为,也可以sinC,所以,可解。

试题解析:(Ⅰ)在ABC中,∵2bcosC+c=2a,

由正弦定理,得2sinBcosC+sinC=2sinA,

∵A+B+C=π,

∴sinA=sin(B+C)=sinBcosC+cosBsinC,…

∴2sinBcosC+sinC=2(sinBcosC+cosBsinC),

∴sinC=2cosBsinC,

∵0<C<π,∴sinC≠0,

∵0<B<π,∴

(Ⅱ)∵三角形ABC中,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网