题目内容

【题目】已知,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.

1)求曲线的方程;

2)若过点的直线与曲线交于两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.

【答案】(1)(2)的最小值为1,此时直线

【解析】

1)用直接法求轨迹方程,即设动点为,把已知用坐标表示并整理即得.注意取值范围;

2)设,将其与曲线的方程联立,消元并整理得

,则可得,由求出

将直线方程联立,得,求得,计算,设.显然,构造,由导数的知识求得其最小值,同时可得直线的方程.

1)设,则,即

整理得

2)设,将其与曲线的方程联立,得

,则

将直线联立,得

.显然

构造

上恒成立

所以上单调递增

所以,当且仅当,即时取“=”

的最小值为1,此时直线.

(注:1.如果按函数的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.

练习册系列答案
相关题目

【题目】某城市有东、西、南、北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵,交警部门记录了11月份30天内的拥堵情况(如下表所示,其中表示拥堵,表示通畅).假设每个人口是否发生拥堵相互独立,将各入口在这30天内拥堵的频率代替各入口每天拥堵的概率.

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

11.15

东入口

西入口

南入口

北入口

11.16

11.17

11.18

11.19

11.20

11.21

11.22

11.23

11.24

11.25

11.26

11.27

11.28

11.29

11.30

东入口

p>

西入口

南入口

北入口

1)分别求该城市一天中早高峰时间段这四个主干道的入口发生拥堵的概率.

2)各人口一旦出现拥堵就需要交通协管员来疏通,聘请交通协管员有以下两种方案可供选择.方案一:四个主干道入口在早高峰时间段每天各聘请一位交通协管员,聘请每位交通协管员的日费用为,且)元.方案二:在早高峰时间段若某主干道入口发生拥堵,交警部门则需临时调派两位交通协管员协助疏通交通,调派后当日需给每位交通协管员的费用为200.以四个主干道入口聘请交通协管员的日总费用的数学期望为依据,你认为在这两个方案中应该如何选择?请说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网