ÌâÄ¿ÄÚÈÝ
£¨2012•»ÆÆÖÇøÒ»Ä££©ÒÑÖªa£¼b£¬ÇÒa2-a-6=0£¬b2-b-6=0£¬ÊýÁÐ{an}¡¢{bn}Âú×ãa1=1£¬a2=-6a£¬an+1=6an-9an-1(n¡Ý2£¬n¡ÊN*)£¬bn=an+1-ban(n¡ÊN*)£®
£¨1£©ÇóÖ¤ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨3£©Èô{cn}Âú×ãc1=1£¬c2=5£¬cn+2=5cn+1-6cn(n¡ÊN*)£¬ÊÔÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£ºcn +acn-1=
(n¡Ý2£¬n¡ÊN*)£®
£¨1£©ÇóÖ¤ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨3£©Èô{cn}Âú×ãc1=1£¬c2=5£¬cn+2=5cn+1-6cn(n¡ÊN*)£¬ÊÔÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£ºcn +acn-1=
| an | 3n-2 |
·ÖÎö£º£¨1£©Í¨¹ýÒÑÖªÌõ¼þÇó³öa£¬bÀûÓÃbn=an+1-ban(n¡ÊN*)£¬Í¨¹ýµÈ±ÈÊýÁе͍ÒåÖ¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©Çó³öÊýÁÐ{bn}µÄͨÏʽ£¬È»ºóÀûÓã¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨3£©Èô{cn}Âú×ãc1=1£¬c2=5£¬cn+2=5cn+1-6cn(n¡ÊN*)£¬Ö±½ÓÀûÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷²½Ö裬֤Ã÷£ºcn +acn-1=
(n¡Ý2£¬n¡ÊN*)£®
£¨2£©Çó³öÊýÁÐ{bn}µÄͨÏʽ£¬È»ºóÀûÓã¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨3£©Èô{cn}Âú×ãc1=1£¬c2=5£¬cn+2=5cn+1-6cn(n¡ÊN*)£¬Ö±½ÓÀûÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷²½Ö裬֤Ã÷£ºcn +acn-1=
| an |
| 3n-2 |
½â´ð£ºÖ¤Ã÷£¨1£©¡ßa£¼b£¬a2-a-6=0£¬b2-b-6=0£¬
¡àa=-2£¬b=3£¬a2=12£®
¡ßan+1=6an-9an-1(n¡Ý2£¬n¡ÊN*)£¬bn=an+1-ban(n¡ÊN*)£¬
¡àbn+1=an+2-3an+1
=6an+1-9an+1-3an+1
=3£¨an+1-3an£©
=3bn £¨n¡ÊN*£©£®
ÓÖb1=a2-3a1=9£¬
¡àÊýÁÐ{bn}Êǹ«±ÈΪ3£¬Ê×ÏîΪb1µÄµÈ±ÈÊýÁУ®
£¨2£©ÒÀ¾Ý£¨1£©¿ÉÒÔ£¬µÃbn=3n+1£¨n¡ÊN*£©£®
ÓÚÊÇ£¬ÓÐan+1-3an=3n+1£¨n¡ÊN*£©£¬¼´
-
=1£¬£¨n¡ÊN*£©£®
Òò´Ë£¬ÊýÁÐ{
}ÊÇÊ×ÏîΪ
=
£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
¹Ê
=
+(n-1)•1£®
ËùÒÔÊýÁÐ{an}µÄͨÏʽÊÇan=£¨3n-2£©•3n-1£¨n¡ÊN*£©£®
£¨3£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£ºcn +acn-1=
(n¡Ý2£¬n¡ÊN*)
£¨i£©µ±n=2ʱ£¬×ó±ß£ºcn+acn-1=c2-2c1=3£¬
Óұߣº
=
=3£¬
¼´×ó±ß=Óұߣ¬ËùÒÔµ±n=2ʱ½áÂÛ³ÉÁ¢£®
£¨ii£©¼ÙÉèµ±n=k£®£¨k¡Ý2£¬k¡ÊN*£©Ê±£¬½áÂÛ³ÉÁ¢£¬¼´ck +ack-1=
(k¡Ý2£¬k¡ÊN*)£®
µ±n=k+1ʱ£¬×ó±ß=ck+1+ack
=5ck-6ck-1-2ck
=3£¨ck-2ck-1£©=3•
=3k£¬
ÓÒ±ß=
=
=3k£®
¼´×ó±ß=Óұߣ¬Òò´Ë£¬µ±n=k+1ʱ£¬½áÂÛÒ²³ÉÁ¢£®
¸ù¾Ý£¨i£©¡¢£¨ii£©¿ÉÒԶ϶¨£¬
cn+acn-1=
¶Ôn¡Ý2µÄÕýÕûÊý¶¼³ÉÁ¢£®
¡àa=-2£¬b=3£¬a2=12£®
¡ßan+1=6an-9an-1(n¡Ý2£¬n¡ÊN*)£¬bn=an+1-ban(n¡ÊN*)£¬
¡àbn+1=an+2-3an+1
=6an+1-9an+1-3an+1
=3£¨an+1-3an£©
=3bn £¨n¡ÊN*£©£®
ÓÖb1=a2-3a1=9£¬
¡àÊýÁÐ{bn}Êǹ«±ÈΪ3£¬Ê×ÏîΪb1µÄµÈ±ÈÊýÁУ®
£¨2£©ÒÀ¾Ý£¨1£©¿ÉÒÔ£¬µÃbn=3n+1£¨n¡ÊN*£©£®
ÓÚÊÇ£¬ÓÐan+1-3an=3n+1£¨n¡ÊN*£©£¬¼´
| an+1 |
| 3n+1 |
| an |
| 3n |
Òò´Ë£¬ÊýÁÐ{
| an |
| 3n |
| a1 |
| 31 |
| 1 |
| 3 |
¹Ê
| an |
| 3n |
| 1 |
| 3 |
ËùÒÔÊýÁÐ{an}µÄͨÏʽÊÇan=£¨3n-2£©•3n-1£¨n¡ÊN*£©£®
£¨3£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£ºcn +acn-1=
| an |
| 3n-2 |
£¨i£©µ±n=2ʱ£¬×ó±ß£ºcn+acn-1=c2-2c1=3£¬
Óұߣº
| an |
| 3n-2 |
| (3¡Á2-2)•32-1 |
| 3¡Á2-2 |
¼´×ó±ß=Óұߣ¬ËùÒÔµ±n=2ʱ½áÂÛ³ÉÁ¢£®
£¨ii£©¼ÙÉèµ±n=k£®£¨k¡Ý2£¬k¡ÊN*£©Ê±£¬½áÂÛ³ÉÁ¢£¬¼´ck +ack-1=
| ak |
| 3k-2 |
µ±n=k+1ʱ£¬×ó±ß=ck+1+ack
=5ck-6ck-1-2ck
=3£¨ck-2ck-1£©=3•
| ak |
| 3k-2 |
ÓÒ±ß=
| ak+1 |
| 3(k+1)-2 |
| (3(k+1)-2)•3k |
| 3(k+1)-2 |
¼´×ó±ß=Óұߣ¬Òò´Ë£¬µ±n=k+1ʱ£¬½áÂÛÒ²³ÉÁ¢£®
¸ù¾Ý£¨i£©¡¢£¨ii£©¿ÉÒԶ϶¨£¬
cn+acn-1=
| an |
| 3n-2 |
µãÆÀ£º±¾Ì⿼²éÊýѧ¹éÄÉ·¨£¬µÈ±È¹ØÏµµÄÈ·¶¨£¬ÊýÁеÝÍÆÊ½¿¼²éÂß¼ÍÆÀíÄÜÁ¦£¬¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿