题目内容
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA= acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,分别求a和c的值.
【答案】
(1)解:∵bsinA= acosB,由正弦定理可得:sinBsinA= sinAcosB,
∵sinA≠0,∴sinB= cosB,
B∈(0,π),
可知:cosB≠0,否则矛盾.
∴tanB= ,∴B=
(2)解:∵sinC=2sinA,∴c=2a,
由余弦定理可得:b2=a2+c2﹣2accosB,
∴9=a2+c2﹣ac,
把c=2a代入上式化为:a2=3,解得a= ,
∴
【解析】(1)由bsinA= acosB,由正弦定理可得:sinBsinA= sinAcosB,化简整理即可得出.(2)由sinC=2sinA,可得c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,代入计算即可得出.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;.
练习册系列答案
相关题目