题目内容
(2013•重庆)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间( )
A.(a,b)和(b,c)内 | B.(﹣∞,a)和(a,b)内 |
C.(b,c)和(c,+∞)内 | D.(﹣∞,a)和(c,+∞)内 |
A
解析
练习册系列答案
相关题目
设定义域为的单调函数,对任意的,都有,若是方程的一个解,则可能存在的区间是( )
A. | B. | C. | D. |
设,则( )
A. | B. | C. | D. |
已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是 ( ).
A.(3,7) | B.(9,25) | C.(13,49) | D.(9, 49) |
已知定义域为R的函数f(x)满足:f(4)=-3,且对任意x∈R总有f′(x)<3,则不等式f(x)<3x-15的解集为( )
A.(-∞,4) |
B.(-∞,-4) |
C.(-∞,-4)∪(4,+∞) |
D.(4,+∞) |
已知函数f(x)是(-∞,+∞)上的偶函数,且f(5+x)=f(5-x),在[0,5]上只有f(1)=0,则f(x)在[-2 012,2 012]上的零点个数为( )
A.804 | B.805 | C.806 | D.808 |
设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1) |
B.函数f(x)有极大值f(-2)和极小值f(1) |
C.函数f(x)有极大值f(2)和极小值f(-2) |
D.函数f(x)有极大值f(-2)和极小值f(2) |