题目内容
【题目】计算题
(1)已知集合A={x|3<x<7},B={x|2<x<10},求A∪B,A∩B,RA
(2)计算下列各式 ①
②(2a b )(﹣6a b )÷(﹣3a b )
【答案】
(1)解:∵A={x|3<x<7},B={x|2<x<10},
∴A∪B={x|2<x<10},A∩B={x|3<x<7},RA={x|x≤3或x≥7}
(2)解:① = = =6,
② = =4ab0=4a
【解析】(1)根据集合的交并补的定义计算即可,(2)①根据对数的运算性质计算即可,②根据幂的运算性质计算即可.
【考点精析】利用交、并、补集的混合运算对题目进行判断即可得到答案,需要熟知求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
【题目】第十二届全国人民代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)将分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数与女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.
(1)完成下面的列联表,并判断是否有的把握认为男生与女生对两会的关注有差异?
比较关注 | 不太关注 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.
附:,.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |