题目内容

在计算机的算法语言中有一种函数[x]叫做高斯函数,它表示数x的整数部分(即小于等于x的最大整数,如[3.15]=3,[0.7]=0,[-2.6]=-3)设函数f(x)=
ax
1+ax
(a>0,且a≠1)
,则函数y=[f(x)-
1
2
]+[f(-x)-
1
2
]
的值域为(  )
A、{-1,0}
B、{0}
C、{-1}
D、{-1,0,1}
分析:本填空题利用特殊值法解决,取a=2,由题意知,f(x)-
1
2
=
2x
1+2x
-
1
2
是定义域R上的奇函数,且值域是(-
1
2
1
2
);
∴f(-x)的值域也是(-
1
2
1
2
);分x=0,x>0,x<0时讨论函数y的值即可.
解答:解:由题意,g(x)=f(x)-
1
2
=
2x
1+2x
-
1
2
=1-
1
1+2x
-
1
2
=
1
2
-
1
1+2x
;f(-x)=
2-x
1+2-x
-
1
2
=
1
1+2x
-
1
2

∴g(-x)=-g(x),即g(x)是奇函数.
又∵2x>0,∴1+2x>1,∴0 <
1
1+2x
< 1
,∴-
1
2
1
1+2x
-
1
2
1
2

-
1
2
<g(-x)<
1
2
.所以,-
1
2
g(x)<
1
2

当x=0时,g(x)=g(-x)=0,y=[g(x)]+[g(-x)]=0;
当x≠0时,若x>0,则0<g(x)<
1
2
,-
1
2
<g(-x)<0,
∴y=[g(x)]+[g(-x)]=0+(-1)=-1,
若x<0,则y=[g(x)]+[g(-x)]=(-1)+0=-1.
所以函数y的值域为{0,-1}.
故选A.
点评:本题用求值域来考查指数函数的性质,函数的奇偶性,函数取整问题,应该是有难度的小题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网