题目内容
【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,则φ=( )
A.
B.
C.
D.
【答案】D
【解析】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min= ,
不妨x1= ,x2= ,即g(x)在x2= ,取得最小值,sin(2× ﹣2φ)=﹣1,此时φ=- ,不合题意,
x1= ,x2= ,即g(x)在x2= ,取得最大值,sin(2× ﹣2φ)=1,此时φ= ,满足题意.
故选:D.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
练习册系列答案
相关题目