题目内容
已知椭圆的一个焦点与短轴的两个端点的连线互相垂直,则此椭圆的离心率为
( )
A. B. C. D.2
B
【解析】略
已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为( )
A. B. C. D.
(本小题满分14分)已知椭圆的一个焦点与抛物线的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|=2,倾斜角为的直线过点.
(1)求椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
.(本小题满分14分)已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点.
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为,试求抛物线上一点,使得与关于直线对称,求出点的坐标.
((本小题满分12分)
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值? 若存在,求出的坐标及定值;若不存在,请说明理由.