题目内容

是定义在上的函数,当,且时,有
(1)证明是奇函数;
(2)当时,(a为实数). 则当时,求的解析式;
(3)在(2)的条件下,当时,试判断上的单调性,并证明你的结论.
(1)函数定义域对称
,函数是奇函数
(2)(3)上是增函数

试题分析:(1)函数定义域对称
,函数是奇函数
(2)

(3)恒成立,上是增函数,时,令上是增函数,综上当上是增函数
点评:判断函数奇偶性需在定义域对称的条件下判断哪一个成立,判断函数单调性,只需判定导数大于零还是小于零
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网