题目内容
已知函数,且,函数的图象经过点,且与的图象关于直线对称,将函数的图象向左平移2个单位后得到函数的图象.
(Ⅰ)求函数的解析式;
(Ⅱ)若在区间上的值不小于8,求实数的取值范围.
(III)若函数满足:对任意的(其中),有,称函数在的图象是“下凸的”.判断此题中的函数图象在是否是“下凸的”?如果是,给出证明;如果不是,说明理由.
(Ⅰ)求函数的解析式;
(Ⅱ)若在区间上的值不小于8,求实数的取值范围.
(III)若函数满足:对任意的(其中),有,称函数在的图象是“下凸的”.判断此题中的函数图象在是否是“下凸的”?如果是,给出证明;如果不是,说明理由.
.(Ⅰ)(Ⅱ)a≥12(III)是
本试题主要考查了函数的解析式和函数的单调性和函数的下凸形的运用。
(1)由题意得h(x)的图象经过(3,4),
代入得,解得m="7." ∴分
∴.
(2)∵,
∴ 由已知有≥8有a≥-x2+8x-3, 令t(x)=-x2+8x-3,则t(x)=-(x-4)2+13,于是t(x)在(0,3)上是增函数.∴ t(x)max=12.∴ a≥12
(3)的图象在是“下凸的”,根据新定义证明,
解:(Ⅰ)由题意得h(x)的图象经过(3,4),
代入得,解得m=7. 1分
∴ 2分
∴. 4分
(Ⅱ)∵,
∴ 由已知有≥8有a≥-x2+8x-3, 6分
令t(x)=-x2+8x-3,则t(x)=-(x-4)2+13,于是t(x)在(0,3)上是增函数.
∴ t(x)max=12.
∴ a≥12. 8分
(III)的图象在是“下凸的”. 9分
的图象在是“下凸的”. 12分
(1)由题意得h(x)的图象经过(3,4),
代入得,解得m="7." ∴分
∴.
(2)∵,
∴ 由已知有≥8有a≥-x2+8x-3, 令t(x)=-x2+8x-3,则t(x)=-(x-4)2+13,于是t(x)在(0,3)上是增函数.∴ t(x)max=12.∴ a≥12
(3)的图象在是“下凸的”,根据新定义证明,
解:(Ⅰ)由题意得h(x)的图象经过(3,4),
代入得,解得m=7. 1分
∴ 2分
∴. 4分
(Ⅱ)∵,
∴ 由已知有≥8有a≥-x2+8x-3, 6分
令t(x)=-x2+8x-3,则t(x)=-(x-4)2+13,于是t(x)在(0,3)上是增函数.
∴ t(x)max=12.
∴ a≥12. 8分
(III)的图象在是“下凸的”. 9分
的图象在是“下凸的”. 12分
练习册系列答案
相关题目