题目内容

若函数f (x)=-(a2-11a+10)x2-(a-1)x+2对一切实数x恒为正值,则实数a的取值范围是


  1. A.
    1≤a≤9
  2. B.
    1<a<9
  3. C.
    a≤1或a>9
  4. D.
    1≤a<9
D
分析:对于函数f(x)=ax2+bx+c,首先对二次项的系数分a=0和a≠0讨论,然后对a≠0再分解出即可.
解答:①当-(a2-11a+10)=0时,解得a=1或a=10.
当a=10时,f(x)=-9x+2不满足对一切实数x恒为正值,故舍去.
当a=1时,f(x)=2满足对一切实数x恒为正值,因此a=1适合题意.
②当-(a2-11a+10)>0时,解得1<a<10.
要使函数f (x)=-(a2-11a+10)x2-(a-1)x+2对一切实数x恒为正值,
则必有△=(a-1)2+8(a2-11a+10)<0,又1<a<10,
解得1<a<9,满足题意.
③当-(a2-11a+10)<0时,解得a<1或a>10.
要使函数f (x)=-(a2-11a+10)x2-(a-1)x+2对一切实数x恒为正值,
则必有△=(a-1)2+8(a2-11a+10)<0,又a<1或a>10,
解得a∈∅.
综上可知:实数a的取值范围是1≤a<9.
故选D.
点评:熟练掌握三个“二次”与判别式△的关系是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网