题目内容

【题目】设F1 , F为椭圆C1 =1,(a1>b1>0)与双曲线C2的公共左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率e∈[ ],则双曲线C2的离心率的取值范围是(
A.[ ]
B.[ ,++∞)
C.(1,4]
D.[ ,4]

【答案】D
【解析】解:如图所示,设双曲线C2的离心率为e1
椭圆与双曲线的半焦距为c.
由椭圆的定义及其题意可得:|MF2|=|F1F2|=2c,|MF1|=2a﹣2c.
由双曲线的定义可得:2a﹣2c﹣2c=2a1 , 即a﹣2c=a1
﹣2=
∵e∈[ ],∴ ∈[ ],
∈[ ].
∴e1∈[ ,4].
故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网