题目内容

已知抛物线y2=2px(p>0)的一条焦点弦AB被焦点F分成m、n两部分,求证:为定值,本题若推广到椭圆、双曲线,你能得到什么结论?

解析:(1)当AB⊥x轴时,m=n=p,

=.

(2)当AB不垂直于x轴时,设AB:y=k(x-),

A(x1,y1),B(x2,y2),|AF|=m,|BF|=n,

∴m=+x1,n=+x2.

将AB方程代入抛物线方程,得

k2x2-(k2p+2p)x+=0,

=

=.

本题若推广到椭圆,则有=(e是椭圆的离心率);若推广到双曲线,则要求弦AB与双曲线交于同一支,此时,同样有=(e为双曲线的离心率).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网