题目内容

4.根据下列条件,求抛物线的方程,并画出图形:
(1)顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6;
(2)顶点在原点,对称轴是y轴,并经过点P(-6,-3).

分析 (1)设抛物线的标准方程为:y2=2px,根据顶点与焦点的距离|$\frac{p}{2}$|=6,求出p值,可得抛物线的标准方程;
(2)设抛物线的标准方程为:x2=2py,根据抛物线经过点P(-6,-3),求出p值,可得抛物线的标准方程.

解答 解:(1)∵抛物线顶点在原点,对称轴是x轴,
∴设抛物线的标准方程为:y2=2px,
又∵顶点与焦点的距离|$\frac{p}{2}$|=6,
∴p=±12,
∴设抛物线的标准方程为:y2=±24x;
(2)∵顶点在原点,对称轴是y轴,
∴设抛物线的标准方程为:x2=2py,
又∵抛物线经过点P(-6,-3).
∴36=-6p,
解得:p=-6,
∴设抛物线的标准方程为:x2=-12y.

点评 本题考查的知识点是抛物线的标准方程,难度不大,属于基础题.

练习册系列答案
相关题目
15.某数学老师身高179cm,他爷爷、父亲和儿子的身高分别是176cm、173cm和185cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测孙子的身高,已知父亲与儿子身高如表一:
 父亲身高x(cm) 176 173 179
 儿子身高y(cm) 173 179 185
该数学老师提供了三种求回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的方案(每种方案都正确).$\stackrel{∧}{b}$=$\frac{\sum_{\;}^{\;}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{\;}^{\;}{x}_{i}^{2}-{n\overline{x}}^{2}}$(公式1),$\stackrel{∧}{b}$=$\frac{\sum_{\;}^{\;}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{\;}^{\;}(x{{\;}_{i}-\overline{x}}^{2})}$(公式2);$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$(公式3)
(方案一):借助(公式1)求$\stackrel{∧}{b}$,借助(公式3),求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案二):借助(公式2)求$\stackrel{∧}{b}$,借助(公式3)求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案三):令X=x-173,Y=y-179,则(表一)转化成诶面的(表二).
 X 3 6
 Y-6 0 6
借助(表二)和(公式1)、(公式3),求出$\stackrel{∧}{Y}$=$\stackrel{∧}{b}$X+$\stackrel{∧}{a}$,进而求出y对x的回归直线(y-179)=$\stackrel{∧}{b}$(x-173)+$\stackrel{∧}{a}$.
结合数据特点任选一种方案,求y与x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并根据回归直线预测数学教师的孙子的身高.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网