题目内容
【题目】已知等差数列{an}的前n项和为Sn=n2+pn+q(p,q∈R),且a2 , a3 , a5成等比数列.
(1)求p,q的值;
(2)若数列{bn}满足an+log2n=log2bn , 求数列{bn}的前n项和Tn .
【答案】
(1)
解法一:
当n=1时,a1=S1=1+p+q,
当n≥2时,an=Sn﹣Sn﹣1…(2分)
=n2+pn+q﹣[(n﹣1)2+p(n﹣1)+q]
=2n﹣1+p.
∵{an}是等差数列,
∴1+p+q=2×1﹣1+p,得q=0.
又a2=3+p,a3=5+p,a5=9+p
∵a2,a3,a5成等比数列,
∴ ,即(5+p)2=(3+p)(9+p),
解得p=﹣1.
解法二:
设等差数列{an}的公差为d,
则 .
∵ ,
∴ , ,q=0.
∴d=2,p=a1﹣1,q=0.
∵a2,a3,a5成等比数列,
∴ ,
即 .
解得a1=0.
∴p=﹣1.
(2)
解法一:
由(1)得an=2n﹣2.
∵an+log2n=log2bn,
∴ .
∴Tn=b1+b2+b3+…+bn﹣1+bn
=40+2×41+3×42+…+(n﹣1)4n﹣2+n4n﹣1,①
,②
①﹣②得 = = .
∴
解法二:
由(1)得an=2n﹣2.
∵an+log2n=log2bn,
∴ .
∴Tn=b1+b2+b3+…+bn﹣1+bn
=40+2×41+3×42+…+(n﹣1)4n﹣2+n4n﹣1.
由 ,
两边对x取导数得,
x0+2x1+3x2+…+nxn﹣1= .
令x=4,得 .
∴
【解析】解法一:(1)a1=S1=1+p+q,an=Sn﹣Sn﹣1=2n﹣1+p,由此求出q=0,由a2 , a3 , a5成等比数列,得p=﹣1.(2)an=2n﹣2, ,由此利用错位相减法能求出数列{bn}的前n项和Tn .
解法二:(1)由 ,得d=2,p=a1﹣1,q=0.由a2 , a3 , a5成等比数列,得p=﹣1.(2)an=2n﹣2. ,由 ,两边对x取导数得,由此能求出 .
【考点精析】掌握数列的前n项和和等差数列的性质是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.