题目内容

【题目】已知等差数列{an}的前n项和为Sn=n2+pn+q(p,q∈R),且a2 , a3 , a5成等比数列.
(1)求p,q的值;
(2)若数列{bn}满足an+log2n=log2bn , 求数列{bn}的前n项和Tn

【答案】
(1)

解法一:

当n=1时,a1=S1=1+p+q,

当n≥2时,an=Sn﹣Sn1…(2分)

=n2+pn+q﹣[(n﹣1)2+p(n﹣1)+q]

=2n﹣1+p.

∵{an}是等差数列,

∴1+p+q=2×1﹣1+p,得q=0.

又a2=3+p,a3=5+p,a5=9+p

∵a2,a3,a5成等比数列,

,即(5+p)2=(3+p)(9+p),

解得p=﹣1.

解法二:

设等差数列{an}的公差为d,

,q=0.

∴d=2,p=a1﹣1,q=0.

∵a2,a3,a5成等比数列,

解得a1=0.

∴p=﹣1.


(2)

解法一:

由(1)得an=2n﹣2.

∵an+log2n=log2bn

∴Tn=b1+b2+b3+…+bn1+bn

=40+2×41+3×42+…+(n﹣1)4n2+n4n1,①

,②

①﹣②得 = =

解法二:

由(1)得an=2n﹣2.

∵an+log2n=log2bn

∴Tn=b1+b2+b3+…+bn1+bn

=40+2×41+3×42+…+(n﹣1)4n2+n4n1

两边对x取导数得,

x0+2x1+3x2+…+nxn1=

令x=4,得


【解析】解法一:(1)a1=S1=1+p+q,an=Sn﹣Sn1=2n﹣1+p,由此求出q=0,由a2 , a3 , a5成等比数列,得p=﹣1.(2)an=2n﹣2, ,由此利用错位相减法能求出数列{bn}的前n项和Tn
解法二:(1)由 ,得d=2,p=a1﹣1,q=0.由a2 , a3 , a5成等比数列,得p=﹣1.(2)an=2n﹣2. ,由 ,两边对x取导数得,由此能求出
【考点精析】掌握数列的前n项和和等差数列的性质是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网