题目内容
【题目】从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组.下图是按上述分组方法得到的频率分布直方图的一部分.其中第六组、第七组、第八组人数依次构成等差数列.
(1)求第六组、第七组的频率,并估计高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)学校决定让这五十人在运动会上组成一个高旗队,在这五十人中要选身高在180cm以上(含180cm)的三人作为队长,记X为身高在的人数,求X的分布列和数学期望.
【答案】(1)第六组,第七组,180人;(2)分布列见解析,
【解析】
(1)根据频率分布直方图求出各组的频率,根据等差数列关系求解;
(2)X可能的取值为0,1,2,3,根据题意分别求出概率即可得到分布列和数学期望.
(1)由题:第一组频率:0.04,第二组频率:0.08,第三组频率:0.2,第四组频率:0.2,
第五组频率:0.3,设第六组频率p,第七组频率q,第八组频率为:0.04,
所以:,
解得:,,
故第六组,第七组,估计人数为180.
(2)X可能的取值为0,1,2,3.
,,
,,
所以X的分布列
X | 0 | 1 | 2 | 3 |
P |
.
【题目】某学校为了解该校高三年级学生数学科学习情况,对一模考试数学成绩进行分析,从中抽取了名学生的成绩作为样本进行统计,该校全体学生的成绩均在,按照,,,,,,,的分组作出频率分布直方图如图(1)所示,样本中分数在内的所有数据的茎叶图如图(2)所示.根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表(3).
分数 | |||
可能被录取院校层次 | 专科 | 本科 | 重本 |
图(3)
(1)求和频率分布直方图中的,的值;
(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中为重本的人数,求随机变量的分布列和数学期望.
【题目】某校为了解学生一周的课外阅读情况,随机抽取了100名学生对其进行调查.下面是根据调查结果绘制的一周学生阅读时间(单位:分钟)的频率分布直方图,且将一周课外阅读时间不低于200分钟的学生称为“阅读爱好”,低于200分钟的学生称为“非阅读爱好”.
(1)根据已知条件完成下面列联表,并据此判断是否有97.5%的把握认为“阅读爱好”与性别有关?
非阅读爱好 | 阅读爱好 | 合计 | |
男女 | 50 | ||
合计 | 14 | ||
男女 |
(2)将频率视为概率,从该校学生中用随机抽样的方法抽取4人,记被抽取的四人中“阅读爱好”的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
附:
0.10 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.