ÌâÄ¿ÄÚÈÝ
£¨2009•Õ¢±±Çøһģ£©Éèf(x)=2cos2x+
sin2x£¬g(x)=
f(x+
)+ax+b£¬ÆäÖÐa£¬bΪ·ÇÁãʵ³£Êý£®
£¨1£©Èôf(x)=1-
£¬x¡Ê[-
£¬
]£¬Çóx£»
£¨2£©Èôx¡ÊR£¬ÊÔÌÖÂÛº¯Êýg£¨x£©µÄÆæżÐÔ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©ÒÑÖª£º¶ÔÓÚÈÎÒâx1£¬x2¡ÊR£¬ºãÓÐsin2x1-sin2x2¡Ü2£¨x1-x2£©£¬µ±ÇÒ½öµ±x1=x2ʱ£¬µÈºÅ³ÉÁ¢£®Èôa¡Ý2£¬ÇóÖ¤£ºº¯Êýg£¨x£©ÔÚRÉÏÊǵÝÔöº¯Êý£®
3 |
1 |
2 |
5¦Ð |
12 |
£¨1£©Èôf(x)=1-
3 |
¦Ð |
3 |
¦Ð |
3 |
£¨2£©Èôx¡ÊR£¬ÊÔÌÖÂÛº¯Êýg£¨x£©µÄÆæżÐÔ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©ÒÑÖª£º¶ÔÓÚÈÎÒâx1£¬x2¡ÊR£¬ºãÓÐsin2x1-sin2x2¡Ü2£¨x1-x2£©£¬µ±ÇÒ½öµ±x1=x2ʱ£¬µÈºÅ³ÉÁ¢£®Èôa¡Ý2£¬ÇóÖ¤£ºº¯Êýg£¨x£©ÔÚRÉÏÊǵÝÔöº¯Êý£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªÖÐf(x)=2cos2x+
sin2x=1+2sin(2x+
)£¬¸ù¾Ýf(x)=1-
£¬x¡Ê[-
£¬
]£¬ÎÒÃÇÒªÒÔ¹¹ÔìÒ»¸öÈý½Ç·½³Ì£¬½áºÏÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖʵõ½´ð°¸£®
£¨2£©ÓÉÒÑÖªÖÐg(x)=ax-sin2x+b+
£¬¸ù¾Ýº¯ÊýÆæżÐԵĶ¨Òå¼°ÐÔÖÊ£¬ÒÔ¼°ÕýÏÒÐͺ¯ÊýµÄÐÔÖÊ£¬¶ÔbµÄÖµ½øÐзÖÀàÌÖÂÛ£¬×îºó×ÛºÏÌÖÂÛ½á¹û£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨3£©ÓÉÒÑÖªÖжÔÓÚÈÎÒâx1£¬x2¡ÊR£¬ºãÓÐsin2x1-sin2x2¡Ü2£¨x1-x2£©£¬ÒÑÖªÖв»Ó¦¸Ãº¬¾ø¶ÔÖµ°É£¬½áºÏÒÑÖªÖÐg(x)=
f(x+
)+ax+b£¬ÀûÓÃ×÷²î·¨£¬Ò×Åжϳög£¨x1£©-g£¨x2£©£¼0£¬½ø¶ø¸ù¾Ýº¯Êýµ¥µ÷ÐԵĶ¨Ò壬µÃµ½½áÂÛ£®
3 |
¦Ð |
6 |
3 |
¦Ð |
3 |
¦Ð |
3 |
£¨2£©ÓÉÒÑÖªÖÐg(x)=ax-sin2x+b+
1 |
2 |
£¨3£©ÓÉÒÑÖªÖжÔÓÚÈÎÒâx1£¬x2¡ÊR£¬ºãÓÐsin2x1-sin2x2¡Ü2£¨x1-x2£©£¬ÒÑÖªÖв»Ó¦¸Ãº¬¾ø¶ÔÖµ°É£¬½áºÏÒÑÖªÖÐg(x)=
1 |
2 |
5¦Ð |
12 |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªf(x)=2cos2x+
sin2x=1+2sin(2x+
)£¬£¨2·Ö£©
ÓÉ1+2sin(2x+
)=1-
µÃ£ºsin(2x+
)=-
£¬£¨1·Ö£©
¡ß-
¡Üx¡Ü
£¬-
¡Ü2x+
¡Ü
£¨1·Ö£©
¡à2x+
=-
£¬x=-
£® £¨1·Ö£©
£¨2£©ÓÉÒÑÖª£¬µÃg(x)=ax-sin2x+b+
£¬£¨1·Ö£©
¢Ù¡ßµ±b=-
ʱ£¬¶ÔÓÚÈÎÒâµÄx¡ÊR£¬×ÜÓÐg£¨-x£©=-ax-sin£¨-2x£©=-£¨ax-sin2x£©=-g£¨x£©£¬
¡àg£¨x£©ÊÇÆ溯Êý£®£¨2·Ö£©£¨Ã»Óйý³Ì¿Û1·Ö£©
¢Úµ±b¡Ù-
ʱ£¬¡ßg(
)¡Ù¡Àg(-
)»òg£¨¦Ð£©¡Ù¡Àg£¨-¦Ð£©µÈ
ËùÒÔ£¬g£¨x£©¼È²»ÊÇÆ溯Êý£¬ÓÖ²»ÊÇżº¯Êý£® £¨2·Ö£©£¨Ã»Óйý³Ì¿Û1·Ö£©
£¨3£©¶ÔÓÚÈÎÒâx1£¬x2¡ÊR£¬ÇÒx1£¼x2£¬ÓÉÒÑÖª£¬ÓÐsin2x2-sin2x1£¼2£¨x2-x1£©£¬£¨2·Ö£©
¡àg£¨x1£©-g£¨x2£©=a£¨x1-x2£©+£¨sin2x2-sin2x1£©£¼£¨a-2£©£¨x1-x2£©£¬
¡ßa¡Ý2£¬¡àg£¨x1£©-g£¨x2£©£¼0£® £¨3·Ö£©
¹Ê£¬º¯Êýg£¨x£©ÊǵÝÔöº¯Êý£® £¨1·Ö£©
×¢£ºÓÉÓÚÓÃÇ󵼵ķ½·¨Ö¤Ã÷²»ÓÃÒÑÖªÌõ¼þ£¬²»¸ø·Ö£®
3 |
¦Ð |
6 |
ÓÉ1+2sin(2x+
¦Ð |
6 |
3 |
¦Ð |
6 |
| ||
2 |
¡ß-
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
2 |
¦Ð |
6 |
5¦Ð |
6 |
¡à2x+
¦Ð |
6 |
¦Ð |
3 |
¦Ð |
4 |
£¨2£©ÓÉÒÑÖª£¬µÃg(x)=ax-sin2x+b+
1 |
2 |
¢Ù¡ßµ±b=-
1 |
2 |
¡àg£¨x£©ÊÇÆ溯Êý£®£¨2·Ö£©£¨Ã»Óйý³Ì¿Û1·Ö£©
¢Úµ±b¡Ù-
1 |
2 |
¦Ð |
2 |
¦Ð |
2 |
ËùÒÔ£¬g£¨x£©¼È²»ÊÇÆ溯Êý£¬ÓÖ²»ÊÇżº¯Êý£® £¨2·Ö£©£¨Ã»Óйý³Ì¿Û1·Ö£©
£¨3£©¶ÔÓÚÈÎÒâx1£¬x2¡ÊR£¬ÇÒx1£¼x2£¬ÓÉÒÑÖª£¬ÓÐsin2x2-sin2x1£¼2£¨x2-x1£©£¬£¨2·Ö£©
¡àg£¨x1£©-g£¨x2£©=a£¨x1-x2£©+£¨sin2x2-sin2x1£©£¼£¨a-2£©£¨x1-x2£©£¬
¡ßa¡Ý2£¬¡àg£¨x1£©-g£¨x2£©£¼0£® £¨3·Ö£©
¹Ê£¬º¯Êýg£¨x£©ÊǵÝÔöº¯Êý£® £¨1·Ö£©
×¢£ºÓÉÓÚÓÃÇ󵼵ķ½·¨Ö¤Ã÷²»ÓÃÒÑÖªÌõ¼þ£¬²»¸ø·Ö£®
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊÇÈý½Çº¯ÊýµÄºãµÈ±ä»»Ó¦Ó㬸¨Öú½Ç¹«Ê½£¬ÕýÏÒÐͺ¯ÊýµÄͼÏóºÍÐÔÖÊ£¬º¯ÊýµÄÆæżÐÔ£¬º¯ÊýµÄµ¥µ÷ÐÔ£¬ÊǺ¯ÊýÎÊÌâ±È½Ï×ۺϵĿ¼²é£¬ÊìÁ·ÕÆÎÕÕýÏÒÐͺ¯ÊýµÄͼÏóºÍÐÔÖÊÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿