题目内容

(2009•闸北区一模)若不等式|x-1|+|x+2|≥4a对任意实数x恒成立,则实数a的取值范围为
(-∞,log43]
(-∞,log43]
分析:若不等式|x+2|+|x+1|>k恒成立,只需 k小于|x+2|+|x+1|的最小值即可.由绝对值的几何意义,,求出|x-1|+|x+2|取得最小值3,得4a≤3求出a的范围.
解答:解:若不等式|x-1|+|x+2|≥4a恒成立,
只需 4a小于等于|x-1|+|x+2|的最小值即可.
由绝对值的几何意义,|x-1|+|x+2|表示在数轴上点x到1,-2点的距离之和.
当点x在1,-2点之间时(包括-1,-2点),即-2≤x≤1时,,|x-1|+|x+2|取得最小值3,
∴4a≤3
所以a≤log43]
故答案为(-∞,log43]
点评:本题考查不等式恒成立问题,本题中注意到|x-1|+|x+2|有明显的几何意义,即绝对值的几何意义,数形结合使问题轻松获解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网