题目内容
【题目】已知函数有两个零点.
(1)求的取值范围;
(2)记的极值点为,求证:.
【答案】(1)(2)见解析
【解析】
(1)求导得,分类讨论求出函数的单调性,从而可求出答案;
(2)由题意得,则,令函数,则,利用导数可求得,从而可得,可得,要证,只需,令,即证,令,求导后得函数的单调性与最值,由此可证结论.
解:(1)因为,
当时,,在单调递增,至多只有一个零点,不符合题意,舍去;
当时,若,则;若,则,
所以在单调递增,在单调递减,
所以,
因为有两个零点,所以必须,则,
所以,解得,
又因为时,; 时,,
所以当时,在和各有一个零点,符合题意,
综上,;
(2)由(1)知,且,
因为的两个零点为,所以,所以,
解得,令所以,
令函数,则,
当时,;当时,;
所以在单调递增,在单调递减,
所以,所以,所以,
因为,又因为,所以,
所以,即,
要证,只需,
即证,即证,即证,
令,再令,即证,
令,则,
所以在单调递增,所以,
所以,原题得证.
【题目】某地区人民法院每年要审理大量案件,去年审理的四类案件情况如表所示:
编号 | 项目 | 收案(件) | 结案(件) | |
判决(件) | ||||
1 | 刑事案件 | 2400 | 2400 | 2400 |
2 | 婚姻家庭、继承纠纷案件 | 3000 | 2900 | 1200 |
3 | 权属、侵权纠纷案件 | 4100 | 4000 | 2000 |
4 | 合同纠纷案件 | 14000 | 13000 | n |
其中结案包括:法庭调解案件、撤诉案件、判决案件等.根据以上数据,回答下列问题.
(Ⅰ)在编号为1、2、3的收案案件中随机取1件,求该件是结案案件的概率;
(Ⅱ)在编号为2的结案案件中随机取1件,求该件是判决案件的概率;
(Ⅲ)在编号为1、2、3的三类案件中,判决案件数的平均数为,方差为S12,如果表中n,表中全部(4类)案件的判决案件数的方差为S22,试判断S12与S22的大小关系,并写出你的结论(结论不要求证明).