题目内容

设函数f(x)满足f(-x)=f(x),且在[1,2]上递增,则f(x)在[-2,-1]上的最小值是(  )
分析:先根据条件得到其为奇函数,再根据偶函数的图象特点得到在[-2,-1]上递减进而得到结论.
解答:解;∵函数f(x)满足f(-x)=f(x),
∴函数f(x)为偶函数,
又偶函数在关于原点对称的区间上单调性相反.
∵在[1,2]上递增;
∴在[-2,-1]上递减.
故f(x)在[-2,-1]上的最小值是f(-1).
故选:A.
点评:本题主要考察函数奇偶性相知的应用.偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性相同.此规则简称:奇同偶反.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网