题目内容

(Ⅰ)求证:
sinx
1-cosx
=
1+cosx
sinx

(Ⅱ)化简:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)
(Ⅰ)证明:(法一)利用比例性质
∵(1-cosx)•(1+cosx)=1-cos2x=sin2x
sinx
1-cosx
=
1+cosx
sinx
…(5分)
(法二)
∵sin2x+cos2x=1,
∴1-cos2x=sinx•sinx,即(1-cosx)•(1+cosx)=sinx•sinx
又∵(1-cosx)≠0,sinx≠0
sinx
1-cosx
=
1+cosx
sinx
…(5分)
(法三)
sinx
1-cosx
-
1+cosx
sinx

=
sin2x-(1-cosx)(1+cosx)
(1-cosx)sinx

=
sin2x-(1-cos2x)
(1-cosx)sinx

=
sin2x-sin2x
(1-cosx)sinx
=0
sinx
1-cosx
=
1+cosx
sinx
…(5分)
(Ⅱ)原式=
tan[2π+(π-α)]
sinαsin[π+(
π
2
-α)]
+
sin(-α)cos[4π-(
π
2
-α)]
sin[π+(
π
2
+α)]cosα

=
tan(π-α)
-sin(
π
2
-α)sinα
+
sinαcos(
π
2
-α)
sin(
π
2
+α)cosα

=
tanα
cosαsinα
-
sin2α
cos2α

=
1-sin2α
cos2α
=
cos2α
cos2α
=1.…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网