题目内容
【题目】已知曲线的极坐标方程是,以极点为原点,以极轴为轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线的参数方程为 .
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设曲线经过伸缩变换得到曲线,曲线上任一点为,求的取值范围.
【答案】(1) 直线的普通方程为,曲线的直角坐标方程为.
(2)的取值范围是.
【解析】
试题(Ⅰ)利用,将转化成直角坐标方程,利用消参法法去直线参数方程中的参数,得到直线的普通方程;(Ⅱ)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出其范围即可.
试题解析:(Ⅰ)直线的普通方程
曲线的直角坐标方程为
(Ⅱ)曲线经过伸缩变换得到曲线的方程为,即
又点在曲线上,则(为参数)
代入,得
所以的取值范围是.
练习册系列答案
相关题目
【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率﹪的关系,对某校高三某班学生进行了关注统计,得到如下数据:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求关于的线性回归方程,并预测答题正确率是100﹪的强化训练次数;
(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
=, =- ,
样本数据的标准差为: