题目内容
(本小题14分)
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,
平面VAD
(1)证明:AB;
(2)求面VAD与面VDB所成的二面角的余弦值。
【答案】
方法一:(用传统方法)(1)证明:平面VAD平面ABCD,ABAD,AB平面ABCD,
面VADABCD=AD,面VAD
(2) 取VD中点E,连接AE,BE,是正三角形,
面VAD, AE, ABVD,ABAE
ABVD, ABAE=A,且AB,AE平面ABE, VD平面ABE,
,BEVD,是所求的二面角的平面角。
在RT中,,
方法二:(空间向量法)以D为坐标原点,建立空间直角坐标系如图。
(1)证明:不妨设A(1,0,0), B(1,1,0), ,,,
因此AB与平面VAD内两条相交直线VA,AD都垂直,面VAD
(2)取VD的中点E,则,
,由=0,得,因此是所求二面角的平面角。
【解析】略
练习册系列答案
相关题目