题目内容
如图,隔河看两目标A、B,但不能到达,在岸边选取相距
km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求两目标A、B之间的距离.

3 |

在△ACD中,∠ADC=30°,∠ACD=120°,∴∠CAD=30°.
∴AC=CD=
.
在△BDC中,∠CBD=180°-(45°+75°)=60°.
由正弦定理,得BC=
=
.
由余弦定理,得AB2=AC2+BC2-2AC•BC•cos∠BCA
=(
)2+(
)2-2
×
cos75°=5.
∴AB=
.
∴两目标A、B之间的距离为
km.

∴AC=CD=
3 |
在△BDC中,∠CBD=180°-(45°+75°)=60°.
由正弦定理,得BC=
| ||
sin60° |
| ||||
2 |
由余弦定理,得AB2=AC2+BC2-2AC•BC•cos∠BCA
=(
3 |
| ||||
2 |
3 |
| ||||
2 |
∴AB=
5 |
∴两目标A、B之间的距离为
5 |


练习册系列答案
相关题目