题目内容
设数列{an}的前n项和为Sn=2an-2n
(Ⅰ)求a1,a2
(Ⅱ)设cn=an+1-2an,证明:数列{cn}是等比数列
(Ⅲ)求数列{
}的前n项和为Tn.
(Ⅰ)求a1,a2
(Ⅱ)设cn=an+1-2an,证明:数列{cn}是等比数列
(Ⅲ)求数列{
n+1 |
2cn |
(Ⅰ)∵a1=S1,2a1=S1+2,
∴a1=2,S1=2,
由2an=Sn+2n知,2an+1=Sn+1+2n+1=an+1+Sn+2n+1
得an+1=sn+2n+1①,
∴a2=S1+22=2+22=6;
(Ⅱ)由题设和①式知an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n,
即cn=2n,
∴
=2(常数),
∴{cn}是首项为2,公比为2的等比数列.
(Ⅲ)∵cn=an+1-2an=2n,
∴
=
,
∴数列{
}的前n项和Tn=
+
+
+…+
,
Tn=
++
+…+
+
,
相减得
Tn=
+
+
+
…+
-
=
+
-
=
-
-
,
∴Tn=
-
-
.
∴a1=2,S1=2,
由2an=Sn+2n知,2an+1=Sn+1+2n+1=an+1+Sn+2n+1
得an+1=sn+2n+1①,
∴a2=S1+22=2+22=6;
(Ⅱ)由题设和①式知an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n,
即cn=2n,
∴
cn+1 |
cn |
∴{cn}是首项为2,公比为2的等比数列.
(Ⅲ)∵cn=an+1-2an=2n,
∴
n+1 |
2cn |
n+1 |
2n+1 |
∴数列{
n+1 |
2cn |
2 |
22 |
3 |
23 |
4 |
24 |
n+1 |
2n+1 |
1 |
2 |
2 |
23 |
4 |
24 |
n |
2n+1 |
n+1 |
2n-2 |
相减得
1 |
2 |
2 |
22 |
1 |
23 |
1 |
24 |
1 |
25 |
n |
2n+1 |
n+1 |
2n+2 |
1 |
2 |
| ||||
1-
|
n+1 |
2n+2 |
3 |
4 |
1 |
2n+1 |
n+1 |
2n+2 |
∴Tn=
3 |
2 |
1 |
2n |
n+1 |
2n+1 |
练习册系列答案
相关题目