题目内容

【题目】如图,在正方体为棱的中点.

Ⅰ)求证:平面

Ⅱ)求证:平面平面

Ⅲ)若正方体棱长为,求三棱锥的体积.

【答案】(1)见解析(2)见解析(3)

【解析】试题分析:(1)根据三角形中位线性质得EF//BD,再根据平行四边形性质得,从而有,再根据线面平行判定定理得平面(2)分析可得关键证平面,这可由正方形性质得,由正方体性质得平面,即得,最后根据线面垂直判定定理以及面面垂直判定定理证得结论(3),三棱锥高为,再利用三棱锥体积公式可得体积

试题解析:

证明:连接

∴四边形是平行四边形,

又∵分别是的中点,

又∵平面平面

平面

证明:在正方体中,

平面

又∵四边形是正方形,

平面

又∵平面

平面平面

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网