题目内容
把下面的符号语言改写成文字语言的形式,并画出图形。若直线平面,直线,则平面
(理)若直线a在平面内,点A也在平面内,但A不在直线a上,A在直线b上,a平行于b,则b在内。
解析
(本小题满分12分)如图4平面四边形ABCD中,AB=AD=,BC=CD=BD,设.(1)将四边形ABCD的面积S表示为的函数;(2)求四边形ABCD面积S的最大值及此时值.
如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.(1)设N为EF上一点,当时,有DN ∥平面AEM,求 的值;(2)试探究点M的位置,使平面AME⊥平面AEF。
(本小题满分14分)如图,在长方体中,,,点在棱上移动.⑴ 证明://平面;⑵证明:⊥;⑶ 当为的中点时,求四棱锥的体积.
(本小题满分14分)如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)求证:P-ABC为正四面体;(2)棱PA上是否存在一点M,使得BM与面ABC所成的角为45°?若存在,求出点M的位置;若不存在,请说明理由。(3)设棱台DEF-ABC的体积为V=, 是否存在体积为V且各棱长均相等的平行六面体,使得它与棱台DEF-ABC有相同的棱长和,并且该平行六面体的一条侧棱与底面两条棱所成的角均为60°? 若存在,请具体构造出这样的一个平行六面体,并给出证明;若不存在,请说明理由.
(本题满分12分)如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:PQ⊥平面DCQ;(2)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.
(本小题满分12分)如图,在平面四边形中,是正三角形,,. (Ⅰ)将四边形的面积表示成关于的函数;(Ⅱ)求的最大值及此时的值.
(本小题满分12分)如图1,在三棱锥P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.(1) 证明:A.D⊥平面PBC;(2) 求三棱锥D-A.BC的体积;(3) 在∠A.CB的平分线上确定一点Q,使得PQ∥平面A.BD,并求此时PQ的长.
(本小题12分)